WAKO 016-20001小胶质细胞Iba1标签抗体

016-20001  小胶质细胞Iba1标签抗体 
Anti Iba1, Rabbit (for Immunocytochemistry)

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献
 

Iba1标签抗体

Iba1属于17-kDa蛋白,在小胶质细胞和巨噬细胞中特异性表达,是神经系统中小胶质细胞的标记物。以下图片使用的是Biotin和Cy5TM红色荧光标记的Iba1抗体。

blob.png

◆优点

·    无需二抗: 缩短试验时间!

·      低背景:能获得高分辨率的数据!

·      经免疫组化验证: 提供高质量产品!

◆使用示例

(1)Anti Iba1, Rabbit, Biotin-conjugatedblob.png

与使用二抗相比,背景值更低,小胶质细胞更清晰

■ 实验条件
○样品:7周 的Winstar大鼠或者7周的ICR小鼠,

大脑皮质层冷冻切片

○染色方法法:ABC法+DAB染色

○抗体浓度:1/200

016-20001  小胶质细胞Iba1标签抗体                                               

2)Anti Iba1, Rabbit, Red Fluorochrome(635)-conjugatedblob.png

与使用二抗相比,效果相同

■实验条件

○样品:7周的Winstar大鼠或者7周的ICR小鼠大脑皮质层的冷

冻切片

○抗体浓度: 1/200

数据提供:

Sanagi ,T. , Ichinohe  ,N., and Kohsaka, S., National Center of Neurology and Psychiatry in Japan.(日本国家研究精神病学,神经医疗研究中心,佐柳老师、一户老师、髙坂老师)

◆特性

016-20001  小胶质细胞Iba1标签抗体

  Anti   Iba1, Rabbit,

 

Biotin-conjugated

Anti Iba1, Rabbit, Red

 

Fluorochrome(635)-conjugated

标记物 Biotin生物素 Cy5TM   红色荧光标记

 

(Ex=634nm, Emi=654nm)

抗原 合成肽(Iba1的C末端的序列)
缓冲液 含0.05% 叠氮化钠的PBS
类别 兔IgG
特异性 小鼠、大鼠、狨 小鼠、大鼠
应用 IHC免疫组化(1:200-2,000)

◆相关产品

016-20001  小胶质细胞Iba1标签抗体

产品编号No. 产品名称 等级 规格
019-19741 Iba1抗体、兔子(用于免疫细胞化学) 免疫化学用 50μg
016-20001 Iba1抗体、兔子(用于免疫印迹) 免疫化学用 50μg
015-25191 抗磷酸化α突触核蛋白、单克隆抗体(PSYN#64) 免疫化学用 50μL
010-26481 抗磷酸化α突触核蛋白、单克隆抗体(PSYN#64)、生物素相结合 免疫化学用 100μl
017-26491 抗磷酸化α突触核蛋白、单克隆抗体(PSYN#64)、FITC相结合 免疫化学用 100μl

注意: 该试剂仅供实验、研究使用,不能用作「医疗药品」、「食品」、「家庭用品」等。

货号   品名     规格  Cas

012-01965   Alminium Oxide   500g

012-03305   Ammonium Dihydrogenphosphate  500g     7722-76-1

012-08643   Amino Acids Mixture Standard Solution, Type B 1mL×5A –

013-08391   Amino Acids Mixture Standard Solution, Type H 5mL

015-14461   Amino Acids Mixture Standard Solution, Type AN-2  5mL

015-25191   Anti Phosphorylated α-Synuclein, Monoclonal Antibody (pSyn#64)      50ul

Wako 016-20001  Anti Iba1, Rabbit (for Western Blotting)  和光纯药  现货

011-14463   Amino Acids Mixture Standard Solution, Type AN-2  1mL×5A –

011-19365   2,2′-Azobis[2-(2-imidazolin-2-yl)propane]

Dihydrochloride   500g     27776-21-2

016-08641   Amino Acids Mixture Standard Solution, Type B 5mL

016-20001   Anti Iba1, Rabbit (for Western Blotting)     50μg

016-23281   Anti Rat P2X4, Monoclonal Antibody     50ug

017-19362   2,2′-Azobis[2-(2-imidazolin-2-yl)propane] Dihydrochloride    25g 27776-21-2

018-08721   Agar, Powder     100g     9002-18-0

018-22021   Anti Mouse Ago2, Monoclonal Antibody 100μL

019-03435   Ammonium sulfate    500g     7783-20-2

019-19741   Anti Iba1, Rabbit (for Immunocytochemistry)    50μg

019-22291   Anti Olfactory Marker Protein, Goat      100μL

021-02195   Boric acid     500g     10043-35-3

Wako 016-20001  Anti Iba1, Rabbit (for Western Blotting)  和光纯药 现货

021-16201   BES-H2O2(Cell-impermeant)   1mg

031-17601   Collagenase Type I    100mg   9001-12-1

032-08385   Citric Acid Monohydrate   500g     5949-29-1

032-15372   Casein Phosphopeptide    25g –

034-06363   N-Caprylic Acid   25mL    124-07-2

034-16111   Cefotaxime Sodium Salt   1g   64485-93-4

035-04595   Creatinine    500g     60-27-5

Wako 016-20001  Anti Iba1, Rabbit (for Western Blotting)  和光纯药 现货

035-17604   Collagenase Type I    1g   9001-12-1

038-23221   α-Casein, from Bovine Milk, Dephosphorylated  1mg

039-01335   Carboxymethyl Cellulose Sodium Salt   500g     9004-32-4

021-17801   BES-So-AM 1mg      936356-51-3

022-07985   γ-Butyrolactone  500mL   96-48-0

025-03195   Buffer Solution Standard (Phosphate pH Standard Equimolal Solution)

pH6.86 (25 degrees C)    500mL

047-18863   Dexamethasone 100mg   50-02-2

049-18801   4′,6-Diamidino-2-phenylindole Dihydrochloride n-Hydrate      10mg      28718-90-3

058-07681   EasySeparator    1set

025-03195   Buffer Solution Standard (Phosphate pH Standard Equimolal Solution)

pH6.86 (25 degrees C)    500mL

019-08393   Amino Acids Mixture Standard Solution, Type H 5Ax1mL –

019-11941   Active Carbon-impregnated Silica Gel   10g –

019-19741   Anti Iba1, Rabbit (for Immunocytochemistry)    50μg

025-15481   BES-Thio     1mg

026-16371   BF-170  1mg

027-01276   Benzyl Alcohol    500mL   100-51-6

028-03185   Buffer Solution Standard (Phthalate pH Standard Solution)

pH4.01 (25 degrees C)    500mL

028-03205   Buffer Solution Standard (Tetraborate pH Standard Solution)

pH9.18 (25 degrees C)    500mL

077-03155   Gelatin   500g     9000-70-8

081-00136   Heparin Sodium  10mu    9041-08-1

088-00705   L-Histidine Hydrochloride Monohydrate      500g     5934-29-2

093-06471   Insulin, Human, recombinant   50mg

097-06474   Insulin, Human, recombinant   1g   11061-68-0

120-04891   L-012    100mg

125-05061   Lysyl Endopeptidase, Mass Spectrometry Grade      5×20μg

129-02541   Lysyl Endopeptidase( R)   10AU

129-04861   LY 294002   5mg      154447-36-6

130-07871   Melibiose     5g   585-99-9

028-16211   BES-So (Cell-impermeant)      1mg

028-17811   BES-H2O2-Ac     1mg

029-16361   BF-168  1mg

039-23511   CultureSure? Freezing Medium    100ml

041-18861   Dexamethasine   1g   50-02-2

042-29445   Dibasic Sodium Phosphate Hydrate 500g     10039-32-4

043-22611   Dextran 200,000 100g     9004-54-0

064-05381   Fibroblast Growth Factor (basic)(FGFb / bFGF / FGF2),

Human, recombinant, Animal-derived-free  50ug     106096-93-9

071-02293   gamma-Globulin, from Human Serum   5g   9007-83-4

075-03075   Gellan Gum  500g     71010-52-1

131-00405   Magnesium Sulfate    500g     10034-, 99-8

136-03032   Methyl Red   25g 493-52-7

137-06085   Molecular Sieves 4A1/16  500g     70955-01-0

138-07872   Melibiose     25g 585-99-9

145-08221   Nuclease P1 500u     54576-84-0

145-08221   Nuclease P1 500u     54576-84-0

162-09115   Polyethylene Glycol 4,000 500g     25322-68-3

163-03545   Potassium Chloride    500g     7447-40-7

164-21655   N/400 Potassium Polyvinyl Sulfate Solu 500mL   26837-42-3

191-01785   Trisodium Citrate Dihydrate    500g     6132-04-3

193-02041   Glycerol 2-Phosphate Disodium Salt n-Hydrate   100g     819-83-0

195-12854   Streptavidin, from Streptomyces avidinii     5mg      9013-20-1

195-16031   StemSure (R) Freezing Medium     100ml

196-00015   Sucrose 500g     57-50-1

196-08675   Sodium Dodecyl Sulfate    500g     151-21-3

197-07485   Sodium Sulfate   500g     7757-82-6

199-02825   Sodium Dihydrogenphosphate Dihydrate    500g     13472-35-0

203-17561   Trichostatin A     1mg      58880-19-6

207-00055   L(+)-Tartaric Acid     500g     87-69-4

208-08385   1mol/l Triethylammonium Hydrogencarbonate Solution   500mL   15715-58-9

223-02112   VA-044  25g 27776-21-2

225-02111   VA-044  100g     27776-21-2

165-09105   Polyethylene Glycol 2,000 500g     25322-68-3

165-17035   Polyvinylpyrrolidone K 30 500g     9003-39-8

167-09045   Polyethylene Glycol 200   500g     25322-68-3

169-04245   Potassium Dihydrogen Phosphate  500g     7778-77-0

169-09125   Polyethylene Glycol 6,000 500g     25322-68-3

185-01003   Rifampicin    5g   13292-46-1

186-01114   all-trans-Retinoic Acid 50mg    302-79-4

189-01001   Rifampicin    1g   13292-46-1

190-05535   Trisodium Citrate Dihydrate    500g     6132-04-3

191-01665   Sodium Chloride  500g     7647-14-5

227-01071   Valproic Acid 5g   99-66-1

231-02011   Wetting Tension Test Mixture No.52.0  50mL

232-01941   Wetting Tension Test Mixture No.42.0  50mL

233-01971   Wetting Tension Test Mixture No.45.0  50mL

234-02001   Wetting Tension Test Mixture No.50.0  50mL

235-01931   Wetting Tension Test Mixture No.41.0  50mL

235-02031   Wetting Tension Test Mixture No.56.0  50mL

236-01961   Wetting Tension Test Mixture No.44.0  50mL

238-01921   Wetting Tension Test Mixture No.40.0  50mL

238-02021   Wetting Tension Test Mixture No.54.0  50mL

238-02141   Wetting Tension Test Mixture No.73.0  50mL    7732-18-5

253-00513   Y-27632 5mg      331752-47-7

257-00511   Y-27632 1mg      331752-47-7

290-34251   Presep-C DNPH   20EA

296-63801   LabAssay? Phospholipid   1300tests

298-64101   Fructooligosaccharides standard set     set

302-93561   Phos-tag (TM) Agarose    0.5mL

304-93521   Phos-tag (TM) Acrylamide AAL-107      10mg

290-34251   Presep-C DNPH   20EA

290-63701   LabAssay? Triglyceride    1000tests   2016-2-29

290-65901   LabAssay? Creatinine      500tests –

291-58601   Lab Assay ALP    900tests –

293-51601   Endotoxin Extracting Solution for LAL Test  10mL x 4

294-62001   DsDD cDNA Subtraction kit Wako   5tests

294-63601   LabAssay? NEFA 750tests –

294-65801   LabAssay? Cholesterol    1000tests

295-50201   DNA Extractor? Kit   50tests

295-51301   Limulus ES-II Single Test Wako     25 tests –

295-51301   Limulus ES-II Single Test Wako     25 tests –

295-73401   Fructooligosaccharides Set      Set

304-93526   Phos-tag (TM) Acrylamide AAL-107 5mM Aqueous Solution   0.3ml

305-93551   Phos-tag? Mass Analytical Kit set

308-93541   Phos-tag (TM) Biotin BTL-105 10mg

308-93563   Phos-tag (TM) Agarose    3mL

308-97201   Phos-tag Biotin BTL-1111 1mM Aqueous Solution    0.1000mL

325-88521   Lipase PS Amano SD  10g –

298-65701   LabAssay? Glucose   1000tests

300-93523   Phos-tag (TM) Acrylamide AAL-107      2mg

301-93531   Phos-tag (TM) Biotin BTL-104 10mg

301-99413   Phos-tagTM Biotin BTL-104 1mM Aqueous Solution[for Campaign]     0.1mL      753451-66-0

302-93522   Phos-tagTM Acrylamide AAL-107 5mM Aqueous Solution[for Campaign]      0.3mL    871839-54-2

631-00651   Cellmatrix Type I -A (Collagen, Type I, 3 mg/mL, pH 3.0)     20mL

637-00653   Cellmatrix Type I -A (Collagen, Type I, 3 mg/mL, pH 3.0)     100mL

637-00653   Cellmatrix Type I -A (Collagen, Type I, 3 mg/mL, pH 3.0)     100mL

638-01021   Endotoxin Standad /JPSE  10000un

986-10001   Anti asialo GM1 (Rabbit), (014-09801)  1mL      617-45-8

产品编号 产品名称 规格 产品等级
013-26471 Anti Iba1, Rabbit, Red Fluorochrome(635)-conjugated小胶质细胞/巨噬细胞特异性蛋白抗体(结合红色荧光素635) 100μl for Immunochemistry
016-26461 Anti Iba1, Rabbit, Biotin-conjugated小胶质细胞/巨噬细胞特异性蛋白抗体(结合生物素) 100μl for Immunochemistry
017-26491 Anti Phosphorylated α-Synuclein, Monoclonal Antibody (pSyn#64) FITC-conjugated 抗磷酸化α突触核蛋白、单克隆抗体(PSYN#64)、FITC相结合 100μ for Immunochemistry
010-26481 Anti Phosphorylated α-Synuclein, Monoclonal Antibody (pSyn#64)Biotin-conjugated 抗磷酸化α突触核蛋白、单克隆抗体(PSYN#64)、生物素相结合 100μ for Immunochemistry
015-25191 Anti Phosphorylated α-Synuclein, Monoclonal Antibody (pSyn#64) 抗磷酸化α-突触核蛋白单克隆抗体 (pSyn#64) 50ul for Immunochemistry
016-20001 ANTI IBA1,RABBIT (FOR WESTERN BLOTTING) 小胶质细胞/巨噬细胞特异性蛋白抗体(免疫印迹) 50μg for Immunochemistry
019-19741 Anti Iba1, Rabbit (for Immunocytochemistry) 小胶质细胞/巨噬细胞特异性蛋白抗体(免疫组化) 50μg for Immunochemistry

Phos-tag™ 生物素 Phos-tag™ Biotin

Phos-tag™ Biotin  无特异性磷酸化抗体时的最佳选择!

Phos-tag™ Biotin是与生物素结合的Phos-tag™,可用于免疫印迹法检测磷酸化蛋白。Phos-tag™ Biotin BTL-104和BTL-105可灵敏检测PVDF膜上的磷酸化蛋白。

新品速递图wako.jpg

◆原

1314447067726121.jpg

◆优点、特色

●  无辐射。

●  无需PVDF膜的封闭处理。

●  Phos-tag™ 的特异性结合与氨基酸种类、序列无关。

●  可适用于免疫印迹和质谱分析等后续工作。

●   Phos-tag™ BTL母液可稳定保存至少6个月。

●  实验流程与使用HRP标记抗体相类似。

※BTL-104、BTL-105、BTL-111三者连接链(Linker)长度不一,但使用上基本相同。BTL-111灵敏度最高。

◆案例、应用

【使用例:在PVDF 膜上检测磷酸化蛋白】

02.jpg

转印在PVDF 膜上的磷酸化蛋白可精确检测到ng级水平,没有检测到相应的去磷酸化蛋白与非磷酸化蛋白的信号斑点。

免疫印迹检测磷酸化蛋白——Phos-tag ™ 生物素。

摘自Eiji Kinoshita ,et al., Mol.Cel.Proteomics (2006) 5: 749

【使用例:Phos-tag™ 生物素在检测蛋白激酶活性的微阵列(生物芯片)中的运用】

蛋白激酶是很多疾病诊断和药物筛选的靶标。近来有科研人员研发了一种检测胞内蛋白激酶活性的高灵敏度多肽微阵列。用微阵列点样机点样2nL体积的底物多肽溶液,使多肽固定在戊二醛预修饰的高氨基末端载玻片。

当多肽经细胞裂解液磷酸化后,用荧光标记的抗phosphotyrosine(磷酸化酪氨酸)抗体检测酪氨酸激酶,或者用Phos-tag™ 生物素,接着用荧光标记的亲和素检测丝氨酸或者苏氨酸激酶。之后用自动微阵列扫描仪检测荧光信号。多肽微阵列系统包括简单的多肽固定,只需少量样品,具有高密度阵列。重要的是,检测细胞裂解液蛋白激酶活性的灵敏度高。

因此多肽微阵列系统可用于高通量筛选细胞内激酶活性,可用于药物筛选和疾病诊断。

产品编号 产品名称 产品规格 产品等级 产品价格
301-93531 Phos-tag™ Biotin BTL-104
Phos-tag 生物素
10mg
308-97201 Phos-tag™ Biotin BTL-111 1mM Aqueous Solution
Phos-tag 生物素1mM水溶液
0.1mL

Phos-tag™ 丙烯酰胺 Phos-tag™ Acrylamide说明书

Phos-tag™ Acrylamide

SDS-PAGE分离不同磷酸化水平的蛋白!

  在不使用放射性同位素的情况下,利用Phos-tag™ SDS-PAGE即可分离不同条带中的磷酸化和非磷酸化蛋白。分离后的凝胶可用于Western blotting和质谱分析等后续实验。

  Phos-tag™ SDS-PAGE操作简单,只需在常规SDS-PAGE胶中加入Phos-tag™ Acrylamide 和Mn2+或者Zn2+即可进行实验。在电泳过程中,磷酸化蛋白的磷酸基团与Phos-tag™中的二价金属离子相结合,降低其迁移速度,从而可区分磷酸化与非磷酸化蛋白。

◆原理

phos-tag原理

◆优点、特色

●  采用Phos-tag™ SDS-PAGE可轻松分离磷酸化蛋白

   无任何放射性元素及化学标记!

●  可检测不同磷酸化水平的磷酸化蛋白

   无需任何磷酸化抗体!

●  适用于内源性蛋白的磷酸化分析!

◆案例、应用

【使用Phos-tag™ SDS-PAGE的磷酸化/非磷酸化蛋白比较】

我推荐使用Phos-tag ™ ——东京大学研究院医学研究科 小川觉之

  Phos-tag ™ 是专为研究磷酸化蛋白而新开发出来的试剂。此产品使用方便,不但可用于体外实验,还能定量分析体内蛋白的磷酸化水平。Phos-tag ™ SDS-PAGE 可用于常规电泳实验,无需购买特殊设备,性价比高。传统蛋白磷酸化的研究需要特异的磷酸化抗体、RI 等其它试剂,操作复杂,花费大,且放射性元素会有安全隐患,而Phos-tag ™ 的出现恰恰可以弥补这些缺点,为磷酸化蛋白研究提供新的方向。

磷酸化蛋白和非磷酸化蛋白利用Phos-tag ™ SDS-PAGE 的分离效果图

  Lane 1 为非磷酸化蛋白,Lane 2-5 为磷酸化蛋白,各蛋白因磷酸化状态不同而条带迁移率也有所不同。

  磷酸化/ 非磷酸化蛋白的数量比、磷酸化程度、磷酸化蛋白的丰度等都可根据条带迁移和条带浓度求得。

【资料提供】

日本东京大学研究生院医学系研究科

【二维电泳中的应用:分析hnRNP K 磷酸化异构体】

  小鼠巨噬细胞J774.1 经LPS 刺激后,裂解细胞,经过免疫沉淀法分离得到hnRNP K。在二维电泳中,一维是IPG 胶,二维是Phos-tag ™ SDS-PAGE,可分离hnRNP K 的异构体。利用质谱仪,可以确认不同的点代表不同的亚型或修饰蛋白。

二维电泳

  同一个等电点的位置上,不同位点发生磷酸化都可以被区分开来(例: spots 6 vs. 8 and spots 4 vs. 7)

【参考文献】

Characterization of multiple alternative forms of heterogeneous nuclear ribonucleoprotein K by phosphate-affinity electrophoresis. Y. Kimura, K. Nagata, N Suzuki, R. Yokoyama, Y. Yamanaka, H. Kitamura, H. Hirano, and O. Ohara, Proteomics , Nov 2010; 10(21): 3884-95.

【结果提供】

  横滨市立大学 生命纳米系统科学研究科 生物体超分子系统科学专业 木村弥生(Dr. Y. Kimura)、平野久(Dr. H. Hirano)理化学研究所RCAI 小原收

【EGF 刺激前后MAPK 磷酸化水平的变化】

  常规SDS-PAGE 和Phos-tagTM SDS-PAGE 后迚行克疫印迹实验分析EGF 刺激的A431 细胞中MAPK 磷酸化水平。

  摘自Kinoshita-Kikuta, E. et al., Mol.Cell. Proteomics. (2007)6: 356.

产品编号 产品名称 产品规格 产品等级 产品价格
304-93526  Phos-tag Acrylamide AAL-107
5mM Aqueous Solution Phos-tag 丙烯酰胺5mM水溶液
0.3mL 蛋白研究
300-93523  Phos-tag Acrylamide AAL-107
Phos-tag 丙烯酰胺
2mg 蛋白研究
304-93521  Phos-tag Acrylamide AAL-107
Phos-tag 丙烯酰胺
10mg 蛋白研究
134-15302 Manganese(II) Chloride Tetrahydrate氯化锰四水合物 25g for Molecular Biology

Phos-tag™ 系列磷酸化蛋白新方法!

  Phos-tag™是一种能与磷酸离子特异性结合的功能性分子。它可用于磷酸化蛋白的分离(Phos-tag™ Acrylamide)、Western Blot检测(Phos-tag™ Biotin)、蛋白纯化 (Phos-tag™Agarose)及质谱分析MALDI-TOF/MS (Phos-tag™ Mass Analytical Kit)。

◆Phos-tag™ 的基本结构

Phos-tag基本结构

特点:

与-2价磷酸根离子的亲和性和选择性高于其它阴离子

在pH 5-8的生理环境下生成稳定的复合物

◆原理

 

◆相关应用

Phos-tag应用

◆相关产品

 产品名称  用  途
 Phos-tag™ Acrylamide  分离: SDS – PAGE 分离不同磷酸化水平的蛋白
 SuperSep Phos-tag™  分离: 预制胶中含有50μM Phos-tag™ Acrylamide
 Phos-tag™ Biotin  检测: 代替 Western Blot 检测中的磷酸化抗体
 Phos-tag™ Agarose  纯化: 通用柱层析,纯化磷酸化蛋白
 Phos-tag™ Mass

 

Analytical Kit

 分析: 用于质谱 MALDI-TOF/MS 分析,提高磷酸化分子的检测灵敏度

phos-tag™由日本广岛大学研究生院医齿药学综合研究科医药分子功能科学研究室开发。

更多产品信息,请点击:http://phos-tag.jp

1.     Phos-tag® Acrylamide的溶解

5mmmol/ Phos-tag® 液体 (3v/v% 甲醇):

1)    10mg  Phos-tag® Acrylamide 里加入 0.1mL 甲醇

2)    使用枪头搅拌混合直至完全溶解。

3)     加3.2mL 蒸馏水, 用枪头混匀。

2-8℃避光保存。不适合零度以下保存。建议保存时间6个月。

   注意:避免溶解过程出现白色悬浮颗粒。

2.     α-Casein, from Bovine Milk, Dephosphorylated(038-23221),阳性对照(含有磷酸化和非磷酸化

   α-Casein),如何使用?

   用水或者上样buffer溶解。用水溶解后,冷冻保存。电泳条件:Phos-tag® 50umol/L,分离胶浓度 10%。

   电流:30mM,1小时。

3.     用Alkaline Phosphatase(for Biochemistry)(018-10693)进行磷酸化蛋白的去磷酸化反应体系。

37℃,过夜。# 10 mg/mL phosphorylated protein 50 μL
# 0.50 M Tris/HCl buffer (pH 9.0) containing 0.10 M MgCl2 10 μL
# Sterilized water 39 μL
# Alkaline phosphatase(018-10693). 0.3 unit / 1 μL有一点需要注意:ALP活性化使用Mg离子,

   同的非磷酸化蛋白质用ALP处理的样品的条带和没有用ALP处理的样品的条带的位置不同。

4.     Phos-tag® SDS-PAGE实验没有成功分离磷酸化蛋白:

1) 使用α-Casein, from Bovine Milk, Dephosphorylated(038-23221)作为阳性对照,确认实验条

件和试剂均没有问题。

2) 可使用Phos-tag®Biotin检测样品中是否有磷酸化蛋白。确认有磷酸化蛋白后,再通过

Phos-tag ®SDS-PAGE进行分离鉴定。

3) 经质谱鉴定有表达磷酸化蛋白,建议增大样品的含量,可使用Phos-tag ®Agarose进行磷酸化蛋白

的富集。磷酸化蛋白含量过低,会影响其分离效果。

4) 文献报道有表达磷酸化蛋白,或者同源蛋白有表达磷酸化蛋白的,建议用Phos-tag® Biotin先确认

样品中是否有磷酸化蛋白。

5) 建议样品的pH值在7左右。酸性或者碱性条件下,Mn2+-Phos-tag®与磷酸化基团的特异性结合较

差。

6) 避免样品中含有高浓度的还原剂,变性剂,表面活性剂等。β-巯基乙醇浓度不高于0.2M(或者5%)。

7) 进行Phos-tag® SDS-PAGE的最佳样品是纯化的蛋白。如果是细胞裂解液,体外激酶反应液,组织均

浆液等,需要摸索最佳的分离胶,Phos-tag® Acylamide的浓度。建议Phos-tag® Acrylamide浓度

从50uM开始摸索。

5.     Phos-tag®SDS-PAGE凝胶用于Western Blotting实验的优化建议:

1) 可以检测的样品包括体外激酶反应体系,细胞裂解液,组织均浆液。

2) 每孔样品的上样量是10~30ug(请根据蛋白表达量进行调整)

3) 制备样品中含有的还原剂、变性剂、螯合剂、钒酸等会使电泳条带发生弯曲或者拖尾。通过TCA沉淀或

渗析法降低杂质含量。

4) 建议样品的pH值在7左右。如果加入上样缓冲液后溶液显黄色或者橙色,加入Tris缓冲液调整pH值为7。

5) 目的蛋白分子量大于60kDa,分离胶的丙烯酰胺浓度为6%;目的蛋白分子量小于60kDa,分离胶的丙烯

酰胺浓度为8%。

6) 如果样品中含有大量蛋白,比如细胞裂解液,组织均浆液,Phos-tag® Acylamide浓度为5~25uM。

若目的蛋白浓度低,建议Phos-tag® Acylamide浓度为100uM。

7) Phos-tag ®SDS-PAGE凝胶用于Western Blotting实验,湿法转膜建议:10mM EDTA的转移缓冲液

处理凝胶10min,不含有EDTA的转移缓冲液处理凝胶10min。重复3次。强烈建议湿法转膜

8) Phos-tag® SDS PAGE半干法转膜建议:

              i.      电泳后用含有EDTA的转移缓冲液处理凝胶,EDTA的浓度为 100mM。100mM EDTA的转移

缓冲液处理凝胶10min,不含有EDTA的转移缓冲液处理凝胶10min。重复3次。

             ii.      转膜的电流值提高2%~3%, 延长时间2成。

            iii.      转膜的缓冲液加SDS,加到大约0.05~0.2%,转膜效率会提高。

9) 使用目的蛋白的非磷酸化抗体即可。比如检测各种肿瘤细胞系中Src激酶活性实验,用Src的非磷酸化抗

体即可。

10) 和光的WIDE-VIEWTM Prestained Protein Siza MarkerIII(230-02461)可检测作为转膜效率,但是无

法判断分子量。

11) 一般预染的蛋白marker在Phos-tag®SDS-PAGE中条带会弯曲,无法判断蛋白分子量。

12) 不能确认磷酸化蛋白和非磷酸化蛋白的分离,请进行常规的SDS-PAGE,Western Blotting实验。比

对目的蛋白的迁移率。

13) 不能确认是因为蛋白发生磷酸化还是出现降解造成蛋白条带迁移,请进行常规的SDS-PAGE实验,确

认不会出现条带迁移。

14) 目的蛋白磷酸化与非磷酸化分离效果不佳,使用α-Casein, from Bovine Milk, Dephosphorylated(038-23221)作为阳性对照,确认实验条件和试剂均没有问题。如果确认能够分离,调整分离胶,Phos-tag® Acylamide的浓度。建议使用品质佳的MnCl2(139-00722)。

【参考文献】

·  Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling[J].Nature communications, 2016, 7,Shindo Y, Iwamoto K, Mouri K, et al.

·  PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7[J]. Nature communications, 2016, 7,Shinde S R, Maddika S.

·  Feedback control of ErbB2 via ERK-mediated phosphorylation of a conserved threonine in the juxtamembrane domain[J]. Scientific Reports, 2016, 6: 31502,Kawasaki Y, Sakimura A, Park C M, et al.

·  Plastid-nucleus communication involves calcium-modulated MAPK signalling[J]. Nature Communications, 2016, 7,Guo H, Feng P, Chi W, et al.

·  Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation[J]. Nature communications, 2016, 7,Mitterer V, Murat G, Réty S, et al.

·  Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors[J]. Biochemical Journal, 2016: BCJ20160557,Ito G, Katsemonova K, Tonelli F, et al.

·  Analysis of phosphorylation of the myosin targeting subunit of smooth muscle myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. The FASEB Journal, 2016, 30(1 Supplement): 1209.1-1209.1,Walsh M P, MacDonald J A, Sutherland C.

·  Using Phos-Tag in Western Blotting Analysis to Evaluate Protein Phosphorylation[J]. Kidney Research: Experimental Protocols, 2016: 267-277,Horinouchi T, Terada K, Higashi T, et al.

·  The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method[J]. The American journal of pathology, 2016, 186(2): 398-409,Kimura T, Hatsuta H, Masuda-Suzukake M, et al.

·  Phos-tag SDS-PAGE resolves agonist-and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts[J].Journal of Molecular and Cellular Cardiology, 2016,Qiu W, Steinberg S F.

·  Analysis of phosphorylation of the myosin-targeting subunit of myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. American Journal of Physiology-Cell Physiology, 2016, 310(8): C681-C691,Sutherland C, MacDonald J A, Walsh M P.

·  Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase[J]. Biosensors and Bioelectronics, 2016, 86: 508-515,Zhou Y, Yin H, Li X, et al.

·  Validation of Cis and Trans Modes in Multistep Phosphotransfer Signaling of Bacterial Tripartite Sensor Kinases by Using Phos-Tag SDS-PAGE[J].PloS one, 2016, 11(2): e0148294,Kinoshita-Kikuta E, Kinoshita E, Eguchi Y, et al.

·  Phosphopeptide Detection with Biotin-Labeled Phos-tag[J]. Phospho-Proteomics: Methods and Protocols, 2016: 17-29,Kinoshita-Kikuta E, Kinoshita E, Koike T.

·  A Phos‐tag SDS‐PAGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1[J]. Proteomics, 2016,Kinoshita E, Kinoshita‐Kikuta E, Kubota Y, et al.

·  Difference gel electrophoresis of phosphoproteome: U.S. Patent Application 15/004,339[P]. 2016-1-22,Tao W A, Wang L.

·  ERK1/2-induced phosphorylation of R-Ras GTPases stimulates their oncogenic potential[J]. Oncogene, 2016,Frémin C, Guégan J P, Plutoni C, et al.

·  Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model[J]. PloS one, 2016, 11(2): e0148574,Maiden S L, Petrova Y I, Gumbiner B M.

·  Serine 231 and 257 of Agamous-like 15 are phosphorylated in floral receptacles[J]. Plant Signaling & Behavior, 2016, 11(7): e1199314,Patharkar O R, Macken T A, Walker J C.

·  A small molecule pyrazolo [3, 4-d] pyrimidinone inhibitor of zipper-interacting protein kinase suppresses calcium sensitization of vascular smooth muscle[J]. Molecular pharmacology, 2016, 89(1): 105-117,MacDonald J A, Sutherland C, Carlson D A, et al.

·  The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2/CPL1 interacts with eIF4AIII and is essential for nonsense-mediated mRNA decay in Arabidopsis[J]. The Plant Cell, 2016: TPC2015-00771-RA,Chen T, Qin T, Ding F, et al.

·  Vasorelaxant Effect of 5′-Methylthioadenosine Obtained from Candida utilis Yeast Extract through the Suppression of Intracellular Ca2+ Concentration in Isolated Rat Aorta[J]. Journal of agricultural and food chemistry, 2016, 64(17): 3362-3370,Kumrungsee T, Akiyama S, Saiki T, et al.

·  Inhibition of deubiquitinating activity of USP14 decreases tyrosine hydroxylase phosphorylated at Ser19 in PC12D cells[J]. Biochemical and biophysical research communications, 2016, 472(4): 598-602,Nakashima A, Ohnuma S, Kodani Y, et al.

·  Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity[J]. The Journal of Neuroscience, 2016, 36(19): 5299-5313,Bertling E, Englund J, Minkeviciene R, et al.

·  AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA[J]. Autophagy, 2016, 12(2): 432-438,Kaushik S, Cuervo A M.

·  Myocardin-related transcription factor a and yes-associated protein exert dual control in G protein-coupled receptor-and RhoA-mediated transcriptional regulation and cell proliferation[J]. Molecular and cellular biology, 2016, 36(1): 39-49,Olivia M Y, Miyamoto S, Brown J H.

·  Extensive phosphorylation of AMPA receptors in neurons[J]. Proceedings of the National Academy of Sciences, 2016, 113(33): E4920-E4927,Diering G H, Heo S, Hussain N K, et al.

·  The transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis[J]. The Plant Cell, 2016, 28(2): 557-567,Yamamoto Y, Negi J, Wang C, et al.

·  The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of molecular and cellular cardiology, 2016, 90: 1-10,Kimura T E, Duggirala A, Smith M C, et al.

·  Atg13 is essential for autophagy and cardiac development in mice[J].Molecular and cellular biology, 2016, 36(4): 585-595,Kaizuka T, Mizushima N.

·  The ChrSA and HrrSA two-component systems are required for transcriptional regulation of the hemA promoter in Corynebacterium diphtheriae[J]. Journal of Bacteriology, 2016: JB. 00339-16,Burgos J M, Schmitt M P.

·  Intergenic Variable-Number Tandem-Repeat Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and Immunity, 2016, 84(7): 2086-2093,Zhu L, Olsen R J, Horstmann N, et al.

·  Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy[J]. Reproductive Toxicology, 2016, 62: 62-70,Ejdesjö A, Brings S, Fleming T, et al.

·  Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression[J].Proceedings of the National Academy of Sciences, 2016, 113(23): 6490-6495,Chuang L S H, Khor J M, Lai S K, et al.

·  Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence[J]. Journal of experimental botany, 2016: erw107,Cho H Y, Wen T N, Wang Y T, et al.

·  Temporal regulation of lipin activity diverged to account for differences in mitotic programs[J]. Current Biology, 2016, 26(2): 237-243,Makarova M, Gu Y, Chen J S, et al.

·  Block of CDK1‐dependent polyadenosine elongation of Cyclin B mRNA in metaphase‐i‐arrested starfish oocytes is released by intracellular pH elevation upon spawning[J]. Molecular reproduction and development, 2016,83(1): 79-87,Ochi H, Aoto S, Tachibana K, et al.

·  Mitotic Exit Function of Polo-like Kinase Cdc5 Is Dependent on Sequential Activation by Cdk1[J]. Cell reports, 2016, 15(9): 2050-2062,Rodriguez-Rodriguez J A, Moyano Y, Játiva S, et al.

·  PLK2 phosphorylates and inhibits enriched TAp73 in human osteosarcoma cells[J]. Cancer medicine, 2016, 5(1): 74-87,Hu Z B, Liao X H, Xu Z Y, et al.

·  Phosphorylated TDP-43 becomes resistant to cleavage by calpain: A regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD[J].Neuroscience research, 2016, 107: 63-69,Yamashita T, Teramoto S, Kwak S.

·  The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects[J]. Nucleic acids research, 2016: gkw506,Herruzo E, Ontoso D, González-Arranz S, et al.

·  An optimized guanidination method for large‐scale proteomic studies[J].Proteomics, 2016,Ye J, Zhang Y, Huang L, et al.

·  Expression and purification of the kinase domain of PINK1 in Pichia pastoris[J]. Protein Expression and Purification, 2016,Wu D, Qu L, Fu Y, et al.

·  BRI2 and BRI3 are functionally distinct phosphoproteins[J]. Cellular signalling, 2016, 28(1): 130-144,Martins F, Rebelo S, Santos M, et al.

·  Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics[J]. Proteomics, 2016,Yang W, Jackson B, Zhang H.

·  Regulation of Beclin 1 Protein Phosphorylation and Autophagy by Protein Phosphatase 2A (PP2A) and Death-associated Protein Kinase 3 (DAPK3)[J]. Journal of Biological Chemistry, 2016, 291(20): 10858-10866,Fujiwara N, Usui T, Ohama T, et al.

·  Regulatory Implications of Structural Changes in Tyr201 of the Oxygen Sensor Protein FixL[J]. Biochemistry, 2016, 55(29): 4027-4035,Yamawaki T, Ishikawa H, Mizuno M, et al.

·  Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim[J].Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(4): 650-659,Yang D, Okamura H, Teramachi J, et al.

·  Analysis of Molecular Species Profiles of Ceramide-1-phosphate and Sphingomyelin Using MALDI-TOF Mass Spectrometry[J]. Lipids, 2016, 51(2): 263-270,Yamashita R, Tabata Y, Iga E, et al.

·  Highly sensitive myosin phosphorylation analysis in the renal afferent arteriole[J]. Journal of Smooth Muscle Research, 2016, 52(0): 45-55,Takeya K.

·  Functional dissection of the CroRS two-component system required for resistance to cell wall stressors in Enterococcus faecalis[J]. Journal of bacteriology, 2016, 198(8): 1326-1336,Kellogg S L, Kristich C J.

·  Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle[J]. American Journal of Physiology-Cell Physiology, 2016, 310(11): C921-C930,Trappanese D M, Sivilich S, Ets H K, et al.

·  ModProt: a database for integrating laboratory and literature data about protein post-translational modifications[J]. Journal of Electrophoresis, 2016,60(1): 1-4,Kimura Y, Toda T, Hirano H.

·  The C-ETS2-TFEB Axis Promotes Neuron Survival under Oxidative Stress by Regulating Lysosome Activity[J]. Oxidative medicine and cellular longevity, 2016,Ma S, Fang Z, Luo W, et al.

·  Essential role of the PSI–LHCII supercomplex in photosystem acclimation to light and/or heat conditions by state transitions[J]. Photosynthesis Research, 2016: 1-10,Marutani Y, Yamauchi Y, Higashiyama M, et al.

·  Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(1): 10-18,Jeon Y H, Ko K Y, Lee J H, et al.

·  Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK[J]. BioMetals, 2016, 29(4): 715-729,Fojtikova V, Bartosova M, Man P, et al.

·  Identification and functional analysis of phosphorylation in Newcastle disease virus phosphoprotein[J]. Archives of virology, 2016: 1-14,Qiu X, Zhan Y, Meng C, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports, 2016, 6: 54-62,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks[J]. Proceedings of the National Academy of Sciences, 2016: 201602827,Zhou C, Elia A E H, Naylor M L, et al.

·  Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system[J]. Nucleic Acids Research, 2016: gkw642,Brosse A, Korobeinikova A, Gottesman S, et al.

·  Evolution of ZnII–Macrocyclic Polyamines to Biological Probes and Supramolecular Assembly[J]. Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field, 2016: 415,Kimura E, Koike T, Aoki S.

·  Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview[J]. Phospho-Proteomics: Methods and Protocols, 2016: 193-209,Batalha Í L, Roque A C A.

·  In vivo phosphorylation of a peptide tag for protein purification[J].Biotechnology letters, 2016, 38(5): 767-772,Goux M, Fateh A, Defontaine A, et al.

·  Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY‐like domains in FrzE and FrzZ[J]. Molecular microbiology, 2016,Kaimer C, Zusman D R.

·  Elevation of cortical serotonin transporter activity upon peripheral immune challenge is regulated independently of p38 mitogen‐activated protein kinase activation and transporter phosphorylation[J]. Journal of neurochemistry, 2016, 137(3): 423-435,Schwamborn R, Brown E, Haase J.

·  The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression[J]. Molecular cell, 2016, 62(4): 532-545,Ewald J C, Kuehne A, Zamboni N, et al.

·  Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination[J]. Journal of Biological Chemistry, 2016, 291(9): 4649-4657,Takasugi T, Minegishi S, Asada A, et al.

·  Increased level of phosphorylated desmin and its degradation products in heart failure[J]. Biochemistry and Biophysics Reports. 2016,Bouvet M, Dubois-Deruy E, Alayi T D, et al.

·  a high‐affinity LCO‐binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor[J]. FEBS letters, 2016, 590(10): 1477-1487,Fliegmann J, Jauneau A, Pichereaux C, et al. LYR3,

·  Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability[J]. Molecular Cell, 2016,Spies J, Waizenegger A, Barton O, et al.

·  PhostagTM-gel retardation and in situ thylakoid kinase assay for determination of chloroplast protein phosphorylation targets[J].Endocytobiosis and Cell Research, 2016, 27(2): 62-70,Dytyuk Y, Flügge F, Czarnecki O, et al.

·  Luteinizing Hormone Causes Phosphorylation and Activation of the cGMP Phosphodiesterase PDE5 in Rat Ovarian Follicles, Contributing, Together with PDE1 Activity, to the Resumption of Meiosis[J]. Biology of reproduction, 2016: biolreprod. 115.135897,Egbert J R, Uliasz T F, Shuhaibar L C, et al.

·  Newby, AC, & Bond, M.(2016). The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of Molecular and Cellular Cardiology, 2016, 90: 1-10,Kimura-Wozniak T, Duggirala A, Smith M C, et al. G.

·  Yeast lacking the amphiphysin family protein Rvs167 is sensitive to disruptions in sphingolipid levels[J]. The FEBS Journal, 2016, 283(15): 2911-2928,Toume M, Tani M.

·  Regulation of CsrB/C sRNA decay by EIIAGlc of the phosphoenolpyruvate: carbohydrate phosphotransferase system[J].Molecular microbiology, 2016, 99(4): 627-639,Leng Y, Vakulskas C A, Zere T R, et al.

·  The Late S-Phase Transcription Factor Hcm1 Is Regulated through Phosphorylation by the Cell Wall Integrity Checkpoint[J]. Molecular and cellular biology, 2016: MCB. 00952-15,Negishi T, Veis J, Hollenstein D, et al.

·  Validation of chemical compound library screening for transcriptional co‐activator with PDZ‐binding motif inhibitors using GFP‐fused transcriptional co‐activator with PDZ‐binding motif[J]. Cancer science, 2016, 107(6): 791-802,Nagashima S, Maruyama J, Kawano S, et al.

·  ULK1/2 Constitute a Bifurcate Node Controlling Glucose Metabolic Fluxes in Addition to Autophagy[J]. Molecular cell, 2016, 62(3): 359-370,Li T Y, Sun Y, Liang Y, et al.

·  Spatiotemporal dynamics of Oct4 protein localization during preimplantation development in mice[J]. Reproduction, 2016: REP-16-0277,Fukuda A, Mitani A, Miyashita T, et al.

·  The tandemly repeated NTPase (NTPDase) from Neospora caninum is a canonical dense granule protein whose RNA expression, protein secretion and phosphorylation coincides with the tachyzoite egress[J]. Parasites & Vectors, 2016, 9(1): 1,Pastor-Fernández I, Regidor-Cerrillo J, Álvarez-García G, et al.

·  Interaction Analysis of a Two-Component System Using Nanodiscs[J].PloS one, 2016, 11(2): e0149187,Hörnschemeyer P, Liss V, Heermann R, et al.

·  Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy[J].Journal of Biological Chemistry, 2016, 291(31): 16162-16174,Akabane S, Matsuzaki K, Yamashita S, et al.

·  p38β Mitogen-Activated Protein Kinase Modulates Its Own Basal Activity by Autophosphorylation of the Activating Residue Thr180 and the Inhibitory Residues Thr241 and Ser261[J]. Molecular and cellular biology, 2016, 36(10): 1540-1554,Beenstock J, Melamed D, Mooshayef N, et al.

·  Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids[J]. The FASEB Journal, 2016, 30(5): 2027-2039,Akagi S, Kono N, Ariyama H, et al.

·  Characterization of a herpes simplex virus 1 (HSV-1) chimera in which the Us3 protein kinase gene is replaced with the HSV-2 Us3 gene[J]. Journal of virology, 2016, 90(1): 457-473,Shindo K, Kato A, Koyanagi N, et al.

·  Generation of phospho‐ubiquitin variants by orthogonal translation reveals codon skipping[J]. FEBS letters, 2016, 590(10): 1530-1542,George S, Aguirre J D, Spratt D E, et al.

·  Evolution of KaiC-Dependent Timekeepers: A Proto-circadian Timing Mechanism Confers Adaptive Fitness in the Purple Bacterium Rhodopseudomonas palustris[J]. PLoS Genet, 2016, 12(3): e1005922,Ma P, Mori T, Zhao C, et al.

·  Phosphorylation of Bni4 by MAP kinases contributes to septum assembly during yeast cytokinesis[J]. FEMS Yeast Research, 2016, 16(6): fow060,Pérez J, Arcones I, Gómez A, et al.

·  Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)[J]. PloS one, 2016, 11(3): e0151173,Xing F, Matsumiya T, Hayakari R, et al.

·  Arm-in-arm response regulator dimers promote intermolecular signal transduction[J]. Journal of bacteriology, 2016, 198(8): 1218-1229,Baker A W, Satyshur K A, Morales N M, et al.

·  The lsh/ddm1 homolog mus-30 is required for genome stability, but not for dna methylation in neurospora crassa[J]. PLoS Genet, 2016, 12(1): e1005790,Basenko E Y, Kamei M, Ji L, et al.

·  Fine tuning chloroplast movements through physical interactions between phototropins[J]. Journal of Experimental Botany, 2016: erw265,Sztatelman O, Łabuz J, Hermanowicz P, et al.

·  Characterization of the Neospora caninum NcROP40 and NcROP2Fam-1 rhoptry proteins during the tachyzoite lytic cycle[J]. Parasitology, 2016,143(01): 97-113,Pastor-Fernandez I, Regidor-Cerrillo J, Jimenez-Ruiz E, et al.

·  Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness[J]. Applied and environmental microbiology, 2016, 82(10): 2929-2942,Yasugi M, Okuzaki D, Kuwana R, et al.

·  Timely Closure of the Prospore Membrane Requires SPS1 and SPO77 in Saccharomyces cerevisiae[J]. Genetics, 2016: genetics. 115.183939,Paulissen S M, Slubowski C J, Roesner J M, et al.

·  DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach[J]. Nucleic Acids Research, 2016: gkw626,Wu K Z L, Wang G N, Fitzgerald J, et al.

·  OVATE Family Protein 8 Positively Mediates Brassinosteroid Signaling through Interacting with the GSK3-like Kinase in Rice[J]. PLoS Genet, 2016,12(6): e1006118,Yang C, Shen W, He Y, et al.

·  Epithelial Sel1L is required for the maintenance of intestinal homeostasis[J]. Molecular biology of the cell, 2016, 27(3): 483-490, Sun S, Lourie R, Cohen S B, et al.

·  Effect of Sodium Dodecyl Sulfate Concentration on Supramolecular Gel Electrophoresis[J]. ChemNanoMat, 2016,Tazawa S, Kobayashi K, Yamanaka M.

·  Intergenic VNTR Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and immunity, 2016: IAI. 00258-16,Zhu L, Olsen R J, Horstmann N, et al.

·  Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis[J]. Journal of Biological Chemistry, 2016: jbc. M116. 722751,Chen X, Stauffer S, Chen Y, et al.

·  Editorial: International Plant Proteomics Organization (INPPO) World Congress 2014[J]. Frontiers in Plant Science, 2016, 7,Heazlewood J L, Jorrín-Novo J V, Agrawal G K, et al.

·  Phosphoinositide kinase signaling controls ER-PM cross-talk[J]. Molecular biology of the cell, 2016, 27(7): 1170-1180,Omnus D J, Manford A G, Bader J M, et al.

·  A multiple covalent crosslinked soft hydrogel for bioseparation[J]. Chemical Communications, 2016, 52(15): 3247-3250,Liu Z, Fan L, Xiao H, et al.

·  Advances in crop proteomics: PTMs of proteins under abiotic stress[J].Proteomics, 2016, 16(5): 847-865,Wu X, Gong F, Cao D, et al.

·  Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S. cerevisiae[J]. Molecular cell, 2016, 62(4): 546-557,Zhao G, Chen Y, Carey L, et al.

·  Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance[J].Antioxidants & redox signaling, 2016,Wareham L K, Begg R, Jesse H E, et al.

·  Two-layer regulation of PAQR3 on ATG14-linked class III PtdIns3K activation upon glucose starvation[J]. Autophagy, 2016: 1-2,Xu D, Wang Z, Chen Y.

·  Regulation of sphingolipid biosynthesis by the morphogenesis checkpoint kinase Swe1[J]. Journal of Biological Chemistry, 2016, 291(5): 2524-2534,Chauhan N, Han G, Somashekarappa N, et al.

·  PAX5 tyrosine phosphorylation by SYK co-operatively functions with its serine phosphorylation to cancel the PAX5-dependent repression of BLIMP1: A mechanism for antigen-triggered plasma cell differentiation[J].Biochemical and biophysical research communications, 2016, 475(2): 176-181,Inagaki Y, Hayakawa F, Hirano D, et al.

·  A Combined Computational and Genetic Approach Uncovers Network Interactions of the Cyanobacterial Circadian Clock[J]. Journal of Bacteriology, 2016: JB. 00235-16,Boyd J S, Cheng R R, Paddock M L, et al.

·  HuR mediates motility of human bone marrow-derived mesenchymal stem cells triggered by sphingosine 1-phosphate in liver fibrosis[J]. Journal of Molecular Medicine, 2016: 1-14,Chang N, Ge J, Xiu L, et al.

·  Combined replacement effects of human modified β-hexosaminidase B and GM2 activator protein on GM2 gangliosidoses fibroblasts[J].Biochemistry and Biophysics Reports, 2016,Kitakaze K, Tasaki C, Tajima Y, et al.

·  Roseotoxin B Improves Allergic Contact Dermatitis through a Unique Anti-inflammatory Mechanism Involving Excessive Activation of Autophagy in Activated T-Lymphocytes[J]. Journal of Investigative Dermatology, 2016,Wang X, Hu C, Wu X, et al.

References on Phos-tag™ Chemistry

·  Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compounds using a novel phosphate capture moleculeRapid Communications of Mass Spectrometry17, 2075-2081 (2003), H. Takeda, A. Kawasaki, M. Takahashi, A. Yamada, and T. Koike 

·  Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc (II) complexDalton Transactions, 1189-1193 (2004), E. Kinoshita, M. Takahashi, H. Takeda, M. Shiro, and T. Koike

·  Quantitative analysis of lysophosphatidic acid by time-of-flight mass spectrometry using a phosphate capture molecule, Journal of Lipid Research45, 2145-2150 (2004), T. Tanaka, H. Tsutsui, K. Hirano, T. Koike, A. Tokumura, and K. Satouchi

·  Production of 1,2-Didocosahexaenoyl Phosphatidylcholine by Bonito Muscle Lysophosphatidylcholine/TransacylaseJournal of Biochemistry,136, 477-483 (2004), K. Hirano, H. Matsui, T. Tanaka, F. Matsuura, K. Satouchi, and T. Koike

·  Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins, Journal of Separation Science, 28, 155-162 (2005), E. Kinoshita, A. Yamada, H. Takeda, E. Kinoshita-Kikuta, and T. Koike

Wako Anti Iba1小胶质细胞Iba1标签抗体

Anti Iba1, Rabbit, Red Fluorochrome(635)-conjugated

小胶质细胞/巨噬细胞特异性蛋白抗体(结合红色荧光素635)

英文名称:Anti Iba1, Rabbit, Red Fluorochrome(635)-conjugated
中文名称;小胶质细胞/巨噬细胞特异性蛋白抗体(结合红色荧光素635)

货号:013-26471
品牌:Wako
品牌中文简称:和光纯药
CAS No.:
储存条件:2-10℃

Anti Iba1, Rabbit, Biotin-conjugated

小胶质细胞/巨噬细胞特异性蛋白抗体(结合生物素)

货号:016-26461
英文名:Anti Iba1, Rabbit, Biotin-conjugated
保存条件:2-10℃
规格:50ug

Iba1是在小胶质细胞和巨噬细胞中高度表达的蛋白质,分子量约17kDa。 此蛋白质通常称为中枢神经系统中的小胶质细胞标记物。

最近,小胶质细胞已被广泛研究,其负责中枢神经系统中的免疫功能,并且与各种疾病相关,如神经变性疾病,精神错乱,脑肿瘤和感染。

  • Iba1属于17-kDa蛋白,在小胶质细胞和巨噬细胞中特异性表达,是神经系统中小胶质细胞的标记物。以下图片使用的是Biotin和Cy5TM红色荧光标记的Iba1抗体。

    wako代理-金畔生物

    ◆优点

    ·    无需二抗: 缩短试验时间!

    ·      低背景:能获得高分辨率的数据!

    ·      经免疫组化验证: 提供高质量产品!

     ◆使用示例

    (1)Anti Iba1, Rabbit, Biotin-conjugatedwako代理-金畔生物

    与使用二抗相比,背景值更低,小胶质细胞更清晰

    ■ 实验条件

    ○样品:7周 的Winstar大鼠或者7周的ICR小鼠,

    大脑皮质层冷冻切片

    ○染色方法法:ABC法+DAB染色

    ○抗体浓度:1/200                                              

    2)Anti Iba1, Rabbit, Red Fluorochrome(635)-conjugatedwako代理金畔生物

    与使用二抗相比,效果相同

    ■实验条件

    ○样品:7周的Winstar大鼠或者7周的ICR小鼠大脑皮质层的冷

    冻切片

    ○抗体浓度: 1/200

    数据提供:

    Sanagi ,T. , Ichinohe  ,N., and Kohsaka, S., National Center of Neurology and Psychiatry in Japan.(日本国家研究精神病学,神经医疗研究中心,佐柳老师、一户老师、髙坂老师)

    ◆特性

      Anti   Iba1, Rabbit,

     

    Biotin-conjugated

    Anti Iba1, Rabbit, Red

     

    Fluorochrome(635)-conjugated

    标记物 Biotin生物素 Cy5TM   红色荧光标记

     

    (Ex=634nm, Emi=654nm)

    抗原 合成肽(Iba1的C末端的序列)
    缓冲液 含0.05% NaN3 的PBS
    类别 兔IgG
    特异性 小鼠、大鼠、狨 小鼠、大鼠
    应用 IHC免疫组化(1:200-2,000)

    注意: 该试剂仅供实验、研究使用,不能用作「医疗药品」、「食品」、「家庭用品」等。

    产品编号 产品名称 产品规格 产品等级
    013-26471 Anti Iba1, Rabbit, Red Fluorochrome(635)-conjugated
    小胶质细胞/巨噬细胞特异性蛋白抗体(结合红色荧光素635)
    100μl for Immunochemistry
    016-26461 Anti Iba1, Rabbit, Biotin-conjugated
    小胶质细胞/巨噬细胞特异性蛋白抗体(结合生物素)
    100μl for Immunochemistry
    017-26491 Anti Phosphorylated α-Synuclein, Monoclonal Antibody (pSyn#64) FITC-conjugated
    抗磷酸化α突触核蛋白、单克隆抗体(PSYN#64)、FITC相结合
    100μ for Immunochemistry
    010-26481 Anti Phosphorylated α-Synuclein, Monoclonal Antibody (pSyn#64)Biotin-conjugated
    抗磷酸化α突触核蛋白、单克隆抗体(PSYN#64)、生物素相结合
    100μ for Immunochemistry
    015-25191 Anti Phosphorylated α-Synuclein, Monoclonal Antibody (pSyn#64)
    抗磷酸化α-突触核蛋白单克隆抗体 (pSyn#64)
    50ul for Immunochemistry
    016-20001 ANTI IBA1,RABBIT (FOR WESTERN BLOTTING)
    小胶质细胞/巨噬细胞特异性蛋白抗体(免疫印迹)
    50μg for Immunochemistry
    019-19741 Anti Iba1, Rabbit (for Immunocytochemistry)
    小胶质细胞/巨噬细胞特异性蛋白抗体(免疫组化)
    50μg for Immunochemistry
    012-26723 Anti Iba1, Monoclonal Antibody (NCNP24)
    抗Iba1,单克隆抗体(NCNP24)
    10 μg 免疫化学
    016-26721 Anti Iba1, Monoclonal Antibody (NCNP24)
    抗Iba1,单克隆抗体(NCNP24)
    50 μg 免疫化学

    温馨提示:不可用于临床治疗。

Articles that you may also interested in

Search Articles

Latest Articles

  • 马克斯-普朗克生物化学研究所、欧洲分子生物学实验室等机构的科学家在Nature Biotechnology上发表了题为“Global detection of human variants and...

  • 胆固醇(Cholesterol)以脂蛋白的微粒形式在体内循环。脂蛋白种类多样,其中HDL(High Density...

  • 2024年11月7日,大阪大学的眼科教授Kohji Nishida的团队在国际顶尖医学期刊《柳叶刀》(The Lancet)上发表了题为:Induced pluripotent...

  • Recombumin® 产品系列为重组人白蛋白(rAlb)。作为供应商,Albumedix利用在白蛋白领域的30年经验为全球客户提供持续的法规与技术指导。 ●Recombumin® 是目前市面上质量优选的无动物来源的重组人白蛋白 ●符合ICH Q7...