Nature

1.

Lam, C.K., et al.: Nature, 465, 478(2010).

Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization.

https://www.ncbi.nlm.nih.gov/pubmed/20505729

2.

Stefater, J. A. 3rd. et al.: Nature, 474, 511(2011).

Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells

https://www.ncbi.nlm.nih.gov/pubmed/21623369

3.

Deng, H. X., et al.: Nature, 477, 211(2011).

Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia.

https://www.ncbi.nlm.nih.gov/pubmed/21857683

4.

Lee, Y., et al.: Nature, 487, 433(2012).

Oligodendroglia metabolically support axons and contribute to neurodegeneration.

https://www.ncbi.nlm.nih.gov/pubmed/22801498

5.

Heneka, M. T., et al.: Nature, 493, 674(2013).

NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice.

https://www.ncbi.nlm.nih.gov/pubmed/23254930

6.

Shao, W., et al.: Nature, 494, 90(2013).

Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin

https://www.ncbi.nlm.nih.gov/pubmed/23242137

7.

Zhang, G., et al.: Nature, 497, 211(2013).

Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH

https://www.ncbi.nlm.nih.gov/pubmed/23636330

8.

Chung, W. S., et al.: Nature, 504, 394(2013).

Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways.

https://www.ncbi.nlm.nih.gov/pubmed/24270812

9.

Roth, T. L., et al.: Nature, 505, 223(2014).

Transcranial amelioration of inflammation and cell death after brain injury

https://www.ncbi.nlm.nih.gov/pubmed/24317693

10.

Najm, F. J., et al.: Nature, 522, 216(2015).

Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo.

https://www.ncbi.nlm.nih.gov/pubmed/25896324

11.

Fourgeaud, L., et al.: Nature, 532, 240(2016).

TAM receptors regulate multiple features of microglial physiology.

https://www.ncbi.nlm.nih.gov/pubmed/27049947

12.

Vasek, M. J., et al.: Nature, 534, 538(2016).

A complement-microglial axis drives synapse loss during virus-induced memory impairment.

https://www.ncbi.nlm.nih.gov/pubmed/27337340

13.

Iaccarino, H. F., et al.: Nature, 540, 230(2016).

Gamma frequency entrainment attenuates amyloid load and modifies microglia.

https://www.ncbi.nlm.nih.gov/pubmed/27929004

14.

Bialas, A. R. et al.: Nature, 546, 539(2017).

Microglia-dependent synapse loss in type I interferon-mediated lupus

https://www.ncbi.nlm.nih.gov/pubmed/28614301

15.

Mass, E., et al.: Nature, 549, 389(2017).

A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease.

https://www.ncbi.nlm.nih.gov/pubmed/28854169

16.

Jun, J. J., et al.: Nature, 551, 232(2017).

Fully integrated silicon probes for high-density recording of neural activity.

https://www.ncbi.nlm.nih.gov/pubmed/29120427

17.

Bussian, T. J., et al.: Nature, 562, 578(2018).

Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline.

https://www.ncbi.nlm.nih.gov/pubmed/30232451

 

Cell

1.

Lujambio, A., et al.: Cell, 153, 2, 449(2013).

Non-Cell-Autonomous Tumor Suppression by p53.

https://www.ncbi.nlm.nih.gov/pubmed/23562644

2.

Parkhurst, C. N., et al.: Cell, 155, 7, 1596(2013).

Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor.

https://www.ncbi.nlm.nih.gov/pubmed/24360280

3.

Wang, Y., et al.: Cell, 160, 6, 1061(2015).

TREM2 Lipid Sensing Sustains the Microglial Response in an Alzheimer’s Disease Model.

https://www.ncbi.nlm.nih.gov/pubmed/25728668

4.

Keren-Shaul, H., et al.: Cell, 169, 7, 1276(2017).

A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease.

https://www.ncbi.nlm.nih.gov/pubmed/28602351

5.

Ulland, T. K., et al.: Cell, 170, 4, 649(2017).

TREM2 Maintains Microglial Metabolic Fitness in Alzheimer’s Disease.

https://www.ncbi.nlm.nih.gov/pubmed/28802038

6.

Qin, Y., et al.: Cell, 174, 1, 156(2018).

A Milieu Molecule for TGF-β Required for Microglia Function in the Nervous System.

https://www.ncbi.nlm.nih.gov/pubmed/29909984

7.

Yan, S., et al.: Cell, 173, 4, 989(2018).

A Huntingtin Knockin Pig Model Recapitulates Features of Selective Neurodegeneration in Huntington's Disease

https://www.ncbi.nlm.nih.gov/pubmed/29606351

 

Nature Medicine

1.

Heppner, F. L., et al.: Nat. Med., 2, 146(2005).

Experimental autoimmune encephalomyelitis repressed by microglial paralysis.

https://www.ncbi.nlm.nih.gov/pubmed/15665833

2.

Nikić, I., et al.: Nat. Med., 4, 495(2011).

A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis.

https://www.ncbi.nlm.nih.gov/pubmed/21441916

3.

Vom, B. J., et al.: Nat. Med., 12, 1812(2012).

Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease–like pathology and cognitive decline

https://www.ncbi.nlm.nih.gov/pubmed/23178247

4.

Minami, S. S., et al.: Nat. Med., 10, 1157(2014).

Progranulin protects against amyloid β deposition and toxicity in Alzheimer's disease mouse models.

https://www.ncbi.nlm.nih.gov/pubmed/25261995

5.

Yun, S. P., et al.: Nat. Med., 7, 931(2018).

Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease.

https://www.ncbi.nlm.nih.gov/pubmed/29892066

6.

Mount, C. W., et al.: Nat Med. 5, 572(2018).

Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas.

https://www.ncbi.nlm.nih.gov/pubmed/29662203

 

Nature Neuroscience

1.

Zhang, K., et al.: Nat. Neurosci., 10, 1064(2003).

HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration.

https://www.ncbi.nlm.nih.gov/pubmed/14502291

2.

Ajami, B., et al.: Nat. Neurosci., 12, 1538(2007).

Local self-renewal can sustain CNS microglia maintenance and function throughout adult life

https://www.ncbi.nlm.nih.gov/pubmed/18026097

3.

Mildner, A., et al.: Nat. Neurosci., 12, 1544(2007).

Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. https://www.ncbi.nlm.nih.gov/pubmed/18026096

4.

Bero, A. W., et al.: Nat. Neurosci., 6, 750(2011).

Neuronal activity regulates the regional vulnerability to amyloid-β deposition.

https://www.ncbi.nlm.nih.gov/pubmed/21532579

5.

Fancy, S. P., et al.: Nat. Neurosci., 14, 1009(2011).

Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination.

https://www.ncbi.nlm.nih.gov/pubmed/21706018

6.

Ajami, B., et al.: Nat. Neurosci., 14, 1142(2011).

Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool.

https://www.ncbi.nlm.nih.gov/pubmed/21804537

7.

Mosher, K. I. et al.: Nat. Neurosci., 11, 1485(2012).

Neural progenitor cells regulate microglia functions and activity.

https://www.ncbi.nlm.nih.gov/pubmed/23086334

8.

Lehmann, S. M., et al.: Nat. Neurosci., 6, 827(2012).

An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration.

https://www.ncbi.nlm.nih.gov/pubmed/22610069

9.

Kierdorf, K., et al.: Nat. Neurosci., 3, 273(2013).

Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways

https://www.ncbi.nlm.nih.gov/pubmed/23334579

10.

Bialas, A. R. et al.: Nat. Neurosci., 12, 1773(2013).

TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement

https://www.ncbi.nlm.nih.gov/pubmed/24162655

11.

Butovsky, O., et al.: Nat. Neurosci., 1, 131(2014).

Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia.

https://www.ncbi.nlm.nih.gov/pubmed/24316888

12.

Saito, T., et al.: Nat. Neurosci., 5, 661(2014).

Single App knock-in mouse models of Alzheimer's disease.

https://www.ncbi.nlm.nih.gov/pubmed/24728269

13.

Erny, D., et al.: Nat. Neurosci., 7, 965(2015).

Host microbiota constantly control maturation and function of microglia in the CNS.

https://www.ncbi.nlm.nih.gov/pubmed/26030851

14.

Sorge, R. E. et al.: Nat. Neurosci., 8, 1081(2015).

Different immune cells mediate mechanical pain hypersensitivity in male and female mice.

https://www.ncbi.nlm.nih.gov/pubmed/26120961

15.

Hama, H., et al.: Nat. Neurosci., 10, 1518(2015).

ScaleS: an optical clearing palette for biological imaging.

https://www.ncbi.nlm.nih.gov/pubmed/26368944

16.

Asai, H., et al.: Nat. Neurosci., 11, 1584(2015).

Depletion of microglia and inhibition of exosome synthesis halt tau propagation.

https://www.ncbi.nlm.nih.gov/pubmed/26436904

17.

Guan, Z., et al.: Nat. Neurosci., 1, 94(2016).

Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain.

https://www.ncbi.nlm.nih.gov/pubmed/26642091

18.

Grabert, K., et al.: Nat. Neurosci., 3, 504(2016).

Microglial brain region-dependent diversity and selective regional sensitivities to aging

https://www.ncbi.nlm.nih.gov/pubmed/26780511

19.

Gonçalves, J. T., et al.: Nat. Neurosci., 6, 788(2016).

In vivo imaging of dendritic pruning in dentate granule cells

https://www.ncbi.nlm.nih.gov/pubmed/27135217

20.

Liu, Q., et al.: Nat. Neurosci., 2, 243(2016).

Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation.

https://www.ncbi.nlm.nih.gov/pubmed/26752157

21.

Safaiyan, S., et al.: Nat. Neurosci., 8, 995(2016).

Age-related myelin degradation burdens the clearance function of microglia during aging.

https://www.ncbi.nlm.nih.gov/pubmed/27294511

22.

Pandya, H., et al.: Nat. Neurosci., 5, 753(2017).

Differentiation of human and murine induced pluripotent stem cells to microglia-like cells

https://www.ncbi.nlm.nih.gov/pubmed/28253233

23.

Füger, P., et al.: Nat. Neurosci., 10, 1371(2017).

Microglia turnover with aging and in an Alzheimer's model via long-term in vivo single-cell imaging

https://www.ncbi.nlm.nih.gov/pubmed/28846081

 

Nature Immunology

1.

Wang, Y., et al.: Nat. Immunol., 13, 753(2012).

IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia.

https://www.ncbi.nlm.nih.gov/pubmed/22729249

2.

Goldmann, T., et al.: Nat. Immunol., 17, 797(2016).

Origin, fate and dynamics of macrophages at central nervous system interfaces

https://www.ncbi.nlm.nih.gov/pubmed/27135602

3.

Haimon, Z., et al.: Nat. Immunol., 19, 636(2018).

Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies.

https://www.ncbi.nlm.nih.gov/pubmed/29777220

 

Nature Biotechnology

1.

Park, S. I., et al.: Nat. Biotechnol., 33, 1280(2015).

Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics

https://www.ncbi.nlm.nih.gov/pubmed/26551059

2.

Staahl, B. T., et al.: Nat. Biotechnol., 35, 431(2017).

Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes

 

https://www.ncbi.nlm.nih.gov/pubmed/28191903

 

Nature Methods

1.

Clark, J. J., et al.: Nat. Methods., 7, 126(2010).

Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals

https://www.ncbi.nlm.nih.gov/pubmed/20037591

2.

Prevedel, R., et al.: Nat. Methods., 13, 1021(2016).

Fast volumetric calcium imaging across multiple cortical layers using sculpted light

https://www.ncbi.nlm.nih.gov/pubmed/27798612

 

Neuron

1.

Simard, A. R., et al.: Neuron, 49, 4, 489(2006).

Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease.

https://www.ncbi.nlm.nih.gov/pubmed/16476660

2.

Bhaskar, K., et al.: Neuron, 68, 1, 19(2010).

Regulation of tau pathology by the microglial fractalkine receptor.

https://www.ncbi.nlm.nih.gov/pubmed/20920788

3.

Bergmann, O., et al.: Neuron, 74, 4, 634(2012).

The Age of Olfactory Bulb Neurons in Humans

https://www.ncbi.nlm.nih.gov/pubmed/22632721

4.

Schafer, D. P., et al.: Neuron, 74, 4, 691(2012).

Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner.

https://www.ncbi.nlm.nih.gov/pubmed/22632727

5.

Paolicelli, R. C., et al.: Neuron, 95, 2, 297(2017).

TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss.

https://www.ncbi.nlm.nih.gov/pubmed/28669544

6.

Tufail, Y., et al.: Neuron, 93, 3, 574(2017).

Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia.

https://www.ncbi.nlm.nih.gov/pubmed/28111081

7.

Abud, E. M., et al.: Neuron, 94, 2, 278(2017).

iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases.

https://www.ncbi.nlm.nih.gov/pubmed/28426964

8.

Bohlen, C. J., et al.: Neuron, 94, 4, 759(2017).

Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures.

https://www.ncbi.nlm.nih.gov/pubmed/28521131

9.

De, Biase, L. M., et al.: Neuron, 95, 2, 341(2017).

Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia.

https://www.ncbi.nlm.nih.gov/pubmed/28689984

10.

Hwang, H. W., et al.: Neuron, 95, 6, 1334(2017).

cTag-PAPERCLIP Reveals Alternative Polyadenylation Promotes Cell-Type Specific Protein Diversity and Shifts Araf Isoforms with Microglia Activation.

https://www.ncbi.nlm.nih.gov/pubmed/28910620

11.

Lehrman, E. K., et al.: Neuron, 100, 1, 120(2018).

CD47 Protects Synapses from Excess Microglia-Mediated Pruning during Development.

https://www.ncbi.nlm.nih.gov/pubmed/30308165

12.

López-Erauskin, J., et al.: Neuron, 100, 4, 816(2018).

ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS

https://www.ncbi.nlm.nih.gov/pubmed/30344044